

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED.

STINFO COPY

AIR FORCE RESEARCH LABORATORY
INFORMATION DIRECTORATE

MELD: A LOGICAL APPROACH TO DISTRIBUTED AND
PARALLEL PROGRAMMING

CARNEGIE MELLON UNIVERSITY

MARCH 2012

FINALTECHNICAL REPORT

 ROME, NY 13441 UNITED STATES AIR FORCE  AIR FORCE MATERIEL COMMAND

AFRL-RI-RS-TR-2012-087

NOTICE AND SIGNATURE PAGE

Using Government drawings, specifications, or other data included in this document for any
purpose other than Government procurement does not in any way obligate the U.S. Government.
The fact that the Government formulated or supplied the drawings, specifications, or other data
does not license the holder or any other person or corporation; or convey any rights or
permission to manufacture, use, or sell any patented invention that may relate to them.

This report was cleared for public release by the 88th ABW, Wright-Patterson AFB Public
Affairs Office and is available to the general public, including foreign nationals. Copies may be
obtained from the Defense Technical Information Center (DTIC) (http://www.dtic.mil).

AFRL-RI-RS-TR-2012-087 HAS BEEN REVIEWED AND IS APPROVED FOR
PUBLICATION IN ACCORDANCE WITH ASSIGNED DISTRIBUTION STATEMENT.

FOR THE DIRECTOR:

 /s/ /s/
CHRISTOPHER J. FLYNN PAUL ANTONIK, Technical Advisor
Work Unit Manager Computing & Communications Division

Information Directorate

This report is published in the interest of scientific and technical information exchange, and its
publication does not constitute the Government’s approval or disapproval of its ideas or findings.

REPORT DOCUMENTATION PAGE Form Approved
OMB No. 0704-0188

Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching data sources,
gathering and maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this collection
of information, including suggestions for reducing this burden to Washington Headquarters Service, Directorate for Information Operations and Reports,
1215 Jefferson Davis Highway, Suite 1204, Arlington, VA 22202-4302, and to the Office of Management and Budget,
Paperwork Reduction Project (0704-0188) Washington, DC 20503.
PLEASE DO NOT RETURN YOUR FORM TO THE ABOVE ADDRESS.
1. REPORT DATE (DD-MM-YYYY)

MAR 2012
2. REPORT TYPE

Final Technical Report
3. DATES COVERED (From - To)

JUL 2010 – SEP 2011
4. TITLE AND SUBTITLE

MELD: A LOGICAL APPROACH TO DISTRIBUTED AND
PARALLEL PROGRAMMING

5a. CONTRACT NUMBER
FA8750-10-1-0215

5b. GRANT NUMBER
N/A

5c. PROGRAM ELEMENT NUMBER
61101E

6. AUTHOR(S)

Seth Copen Goldstein
Flavio Cruz

5d. PROJECT NUMBER
BI20

5e. TASK NUMBER
CM

5f. WORK UNIT NUMBER
U0

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)

Carnegie Mellon University
5000 Forbes Ave
Pittsburg, PA 15213

8. PERFORMING ORGANIZATION
REPORT NUMBER

 N/A

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES)

Air Force Research Laboratory/RITA
525 Brooks Road
Rome NY 13441-4505

10. SPONSOR/MONITOR'S ACRONYM(S)
 AFRL/RI

11. SPONSORING/MONITORING
AGENCY REPORT NUMBER
AFRL-RI-RS-TR-2012-087

12. DISTRIBUTION AVAILABILITY STATEMENT
Approved for Public Release; Distribution Unlimited. PA# 88ABW-2012-1125
Date Cleared: 2 MARCH 2012
13. SUPPLEMENTARY NOTES

14. ABSTRACT

With the industry-wide shift to multi-core processors and the rise of large-scale clusters as the engines for web services, it is clear
that the future is all about exploiting parallelism. Unfortunately, writing parallel or concurrent software has long been a notoriously
difficult task for programmers. In particular, the goals of maintaining correctness while also achieving high performance are far
more challenging in a parallel or concurrent environment compared with a single-threaded system. Meld is a logic-based
programming language that has proven effective for programming massively distributed systems. In this report we describe Meld
and how it can also be used to program more traditional parallel machines. We evaluate Meld on a small set of benchmarks and
describe some of the methods we use to make it an effective tool for parallel programming. While more work needs to be done it is
clear that the use of a single language for describing both computation and coordination can lead to clear, concise, and efficient
implementations.
15. SUBJECT TERMS

parallel programming, logic programming, Meld

16. SECURITY CLASSIFICATION OF: 17. LIMITATION OF
ABSTRACT

UU

18. NUMBER
OF PAGES

36

19a. NAME OF RESPONSIBLE PERSON
CHRISTOPHER J. FLYNN

a. REPORT
U

b. ABSTRACT
U

c. THIS PAGE
U

19b. TELEPHONE NUMBER (Include area code)
N/A

 Standard Form 298 (Rev. 8-98)
Prescribed by ANSI Std. Z39.18

i

TABLE OF CONTENTS

1 ABSTRACT ... 1

2 INTRODUCTION ... 1

2.1 Approaches to Parallel Programming .. 2

2.2 Our Approach with the Meld Language: from Ensembles to Parallel Systems 4

2.3 Goal of Our Research and Expected Impact ... 4

3 METHODS, ASSUMPTIONS , AND PROCEDURES ... 5

3.1 The Meld Language ... 5

3.1.1 Kinds of Facts ... 5

3.1.2 Rules ... 6

3.1.3 Evaluation ... 7

3.1.4 Aggregates .. 7

3.1.5 Deletion ... 7

3.1.6 Linear Logic .. 8

3.2 Distribution and Optimization .. 8

3.2.1 Localization ... 8

3.2.2 Local Aggregates .. 10

3.2.3 Neighborhood Aggregates .. 10

3.2.4 Detecting Iterative Refinements .. 12

3.2.5 Linear Logic .. 12

3.3 Implementing Meld on Parallel and Distributed Systems ... 13

3.3.1 Execution Model .. 14

3.3.2 Graph Clustering .. 15

3.3.3 Multithreaded Execution ... 16

3.3.4 Distributed Computation ... 17

3.4 Implementation Details .. 17

3.4.1 Compiler ... 17

3.4.2 Virtual Machine .. 17

4 RESULTS AND DISCUSSION ... 20

4.1 Experimental Results .. 20

5 CONCLUSION ... 25

REFERENCES .. 26

APPENDIX .. 28

ii

LIST OF FIGURES

Figure 1: Abstract syntax for Meld programs .. 6
Figure 2: All-Pairs Shortest Path algorithm. ... 7
Figure 3: Original code. ... 9
Figure 4: Localization tree for code in Figure 3. ... 9
Figure 5: Localized rules for code in Figure 3... 10
Figure 6: PageRank algorithm. .. 11
Figure 7: Transformed rules using a neighborhood aggregate. .. 12
Figure 8: Clustering using a breadth-first method. ... 15
Figure 9: Performance results for the PageRank datasets. Note that both DD and DDWO come up

on top and that MPI and DD usually trail each other, since they are both static schedulers.
 .. 22

Figure 10: Performance results for the Neural Network (NN) and Belief Propagation (BP) programs.
While BP is a program with a very regular and clear-cut computational pattern, in NN the
communication and computation is not as regular, therefore it requires dynamic schedulers
to perform well. .. 23

Figure 11: Performance results for the All Pairs Shortest Paths program. In (a) and (c) only the
shortest distance is computed, while in (b) both the minimal distance and the corresponding
path are computed. ... 24

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED
1

1 ABSTRACT
With the industry-wide shift to multi-core processors and the rise of large-scale clusters as the
engines for web services, it is clear that the future is all about exploiting parallelism.
Unfortunately, writing parallel or concurrent software has long been a notoriously difficult
task for programmers. In particular, the goals of maintaining correctness while also achieving
high performance are far more challenging in a parallel or concurrent environment compared
with a single-threaded system.

Meld is a logic-based programming language that has proven effective for programming
massively distributed systems. In this report we describe Meld and how it can also be
used to program more traditional parallel machines. We evaluate Meld on a small set of
benchmarks and describe some of the methods we use to make it an effectiv tool for parallel
programming. While more work needs to be done it is clear that the use of a single language
for describing both computation and coordination can lead to clear, concise, and efficient
implementations.

2 INTRODUCTION
With the industry-wide shift to multi-core processors and the rise of large-scale clusters as
the engines for web services, it is clear that the future is all about exploiting parallelism.
Unfortunately, writing parallel or concurrent software has long been a notoriously difficult
task for programmers. In particular, the goals of maintaining correctness while also
achieving high performance are far more challenging in a parallel or concurrent
environment compared with a single-threaded system. Maintaining the correct functionality
of the software is complicated in part because a key to avoiding performance bottlenecks is
to distribute (and often replicate) program state across the machine, and managing the
concurrent accesses to this distributed state (while avoiding undesirable forms of race
conditions or inconsistency) can greatly increase programming complexity. Compared with
sequential systems, parallel and concurrent systems are susceptible to additional performance
pitfalls including load imbalance, synchronization stalls, communication overhead, network
bottlenecks, and, in cases with a shared address space (e.g., multi-core), more complex
interactions with the memory hierarchy (e.g., false sharing). Assuming that the programmer has
identified a sufficient source of fundamental parallelism, the key to achieving good
performance typically boils down to data partitioning and scheduling: i.e., distributing the
tasks (and their associated data) across the machine and prioritizing them in the right order
such that the amount of work is evenly balanced while exploiting locality to minimize
communication, minimize synchronization, and take full advantage of the memory hierarchy.
This project investigated a new, general approach to let programmers solve both the data
partitioning and the scheduling problem succinctly, provably, and all within a single language,
Meld.

In the context of the Claytronics project [1], a massive distributed system with millions
of modular robots [2], a new language called Meld has emerged. Developed by Ashley-
Rollman et. al [3], Meld makes programming such types of systems possible, since it allows
the ensemble to be seen as a unified whole. The language handles issues such as
communication and synchronization automatically by compiling programs into fully

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED
2

distributed code.
Meld is a bottom-up logic programming language based on Datalog [4]. In Meld, each fact

must refer to a node in the ensemble where the fact will be stored and the communication
between nodes is made implicit through the use of structural facts. This declarative
approach removes the need to understand how the system manages state and how
communication is implemented underneath, making programs far easier to write and read.
Moreover, the use of logic programming makes programs particularly suited for correctness
proofs.

This report describes our experiments in extending Meld to multicore and traditional
distributed systems. While in ensembles the system is viewed as a graph of processing units,
in traditional architectures we view it as a data structure that is manipulated by several
threads or processes. For instance, in neural networks we have a graph of nodes, where
nodes naturally correspond to neurons and each node contains several facts such as its layer
type and the weight of its connections.

Previous results for ensembles showed that it is possible to write efficient and scalable
programs on systems with over one million nodes [3]. For parallel and distributed
architectures, we have applied Meld in machine learning algorithms such as loopy belief
propagation, graph algorithms and sparse matrix problems. We developed a new compiler and
runtime system that runs on multicore processors using Pthreads and also on distributed
systems, using OpenMPI [5]. The compiler leverages information about the network topology
to speed up programs, and the runtime system uses several strategies for manipulating the
graph of nodes. Preliminary results indicate that Meld is able to scale programs in these
architectures with minimal effort from the programmer.

2.1 Approaches to Parallel Programming
Over the years, researchers have explored a rich set of parallel programming models with
varying degrees of success. At one end of the spectrum are lower-level programming
abstractions such as message passing (e.g., MPI) and shared memory (e.g., OpenMP). An
advantage of these lower-level models is expressiveness: with sufficient effort, one can
control nearly every aspect of how the parallel program behaves (including data partitioning
and scheduling), and one can apply these models to almost any appli- cation domain. The key
disadvantage, however, is programming complexity: because programmers must explicitly
manage asynchronous threads and worry about all of the possible ways in which their
arbitrary interleavings could accidentally corrupt program state, most mortal programmers
struggle mightily with correctness issues. In theory, an MPI (or OpenMP) wizard can
squeeze every last drop of performance out of a machine because they can control
everything, but in reality even programming wizards struggle with correctness and
performance issues in these models once the applications become sufficiently large and
sophisticated. The result tends to be a tight intertwining of the algorithm and the
instructions for coordinating the parallel execution, making the program even harder to
understand and maintain. In addition to these scalability challenges, fault tolerance is also left
as an “exercise for the reader” in these lower-level programming abstractions.

To help address these correctness challenges, a number of researchers have explored
functional (e.g., Id90 [6], [7], Haskell [8], and NESL [9]) languages as a way to create
parallelism while reducing the amount of state that the programmer must explicitly reason
about. These declarative and functional approaches help to simplify the programming task and

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED
3

eliminate race conditions on data, but unfortunately they do not allow the programmer to
control scheduling (hence performance can often be disappointing), and proof capabilities
have not been demonstrated.

We observe that some of the most successful parallel programming models have been
tailored to application domains where the models can provide a reasonably high level of
abstraction (e.g., without diving into the gory details of how to manage asynchronous
threads) while still providing a clear and sufficiently expressive model for data partitioning
and scheduling. For example, synchronous dataflow (e.g., SISAL [10]) and stream-based
languages (e.g., StreamIt [11]) have also been quite successful for streaming-type applications
due to their simple producer/consumer data sharing model and their simple pipelined
scheduling model. In the scientific computing domain, HPF’s data parallel model [12] has
been quite successful for dense matrix computations: rather than explicitly creating threads,
the programmer simply specifies how the data is to be distributed across the machine, and the
computation is scheduled accordingly using an owner computes model. In the arena of
databases, SQL [13] is an example of a declarative language which works in a very limited
domain, but is extremely successful.

A recent success story is the MapReduce programming model, which can be viewed as a
somewhat more generalized version of the data parallel model that is optimized for large
scale clusters. In MapReduce, the data sharing and scheduling model is very simple: the
computation for the map phase is executed on the nodes that contain that data, the
communication occurs only during the subsequent global reduce phase. The DryadLINQ
[14], [15], Pregel [16], and Pig Latin [17] are programming models which are also designed
for clusters and offer somewhat more general programming models than MapReduce, but they
do not allow the programmer to specify scheduling strategies or support formal proof
techniques.

Hellerstein’s group has been working on a family of Datalog [18] descendants—P2 [19],
Overlog [20], and SNLog [21]—that provided the initial inspiration for our own work and
were designed for program- ming overlay networks and sensor networks. In contrast, Meld
has added—among other things—support for robot actuation and sensing, Meld is based upon
a well-defined formal semantics, and Meld has been shown to be amenable to formal proof.
In principle, even very large ensembles can be reasoned about formally with Meld.

One clear theme that comes from looking a t this impressive body of work is that
there lacks a clear and concise method for coordinating the data partitioning and scheduling
of threads separately from the main algorithm. The idea of a coordination specification,
however, is not new. Early work in the context of Fortran showed that separating out
coordination provided significant leverage for dense matrix codes with potentially unbalanced
work [22]. Other work from this period includes Linda [23], CLP [24], and Schedule [25]
which are all examples of languages which directly supported coordination. Our approach
borrows ideas from this early work, applying them to Meld in the context of modern
architectures.

In short, no other approach has been shown to create expressive, concise parallel programs
which are scalable, amenable to proof, fault tolerant, and support an easy path towards
efficiency by allowing programmers to optionally and incrementally coordinate the parallel
execution of their program.

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED
4

2.2 Our Approach with the Meld Language: from Ensembles to Parallel Systems
Our approach to parallel programming originated with our work on claytronics [26], [27]: a
form of programmable matter that is an example of a massively distributed cyber-physical
system. Because a claytronics ensemble might consist of millions of processing nodes which
are constantly moving around each other and frequently experiencing failures, devising
successful strategies for programming such an extreme system—where scalability and fault
tolerance are so important—has given us a very different perspective on the parallel
programming problem compared with most previous work. We believe that this unique
perspective is our “secret weapon” in successfully attacking the parallel programming problem
for a broad range of concurrent systems.

To understand where we started and how our insights might be more broadly applicable, we
begin by dividing concurrent systems into two broad categories (each with two
subcategories):

1. Ensembles:
• Embedded-physical distributed systems (e.g., claytronics, sensor networks)
• Geographically distributed systems (e.g., the power grid, the Internet)

2. Parallel Systems:
• Cloud computing systems (e.g., Google-style clusters, etc.)
• Parallel machines (centralized, synchronized, big-iron and multi-core)

The apparent differences between these systems have led to significantly different approaches to
solving the notoriously hard problem of programming them. Traditional proposed solutions
have focused on specific features of each type of system. Recent advances in the underlying
hardware, however, have reduced the differences between these systems from the
programmer’s standpoint, making robustness, fault tolerance, and scalability essential for all
of these systems.

To successfully program claytronics ensembles, we developed a new programming
language that we call Meld [3], [28]. Meld is an extension of Datalog [46], [18] which uses a
declarative approach to concurrent programming that is based upon logic programming.
Meld’s conciseness helps to limit the complexity burden on the programmer while writing
sophisticated applications [28]. In the context of claytronics, we have demonstrated not only
that Meld programs are scalable, efficient and fault-tolerant, but that they are also amenable
to formal proof techniques [3], [29], [30]. As we will describe in detail in the remainder of
this report, our success in programming claytronics ensembles can be transferred both to
geographically-distributed ensembles (e.g., the power grid) and to large parallel systems
(including multi-core architectures and large clusters).

2.3 Goal of Our Research and Expected Impact
One can think of MPI and MapReduce as being two different extremes along a spectrum of
languages: MPI offers full expressiveness and control over data partitioning and scheduling,
but at the expense of significant programming complexity; MapReduce simplifies the
programming task and implicitly supports scalability and fault tolerance, but with limited
application scope and no mechanism for programmers to specify data partitioning or
scheduling strategies beyond the default.

Our hypothesis is that Meld sits at a sweet spot between these two extremes: Meld offers the
pro- gramming simplicity of MapReduce (with scalability and fault tolerance baked in), but
(1) has a broader application scope (e.g., it can efficiently handle highly irregular forms of

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED
5

parallelism), (2) gives program- mers the ability to express clever data partitioning and
scheduling strategies within the language itself, and (3) supports formal proof techniques.

We believe that the key to success for Meld is the fact that programmers can choose to
incrementally specify the coordination of data partitioning and scheduling in the same
language in which they are implementing the application itself. In the case of claytronics, the
data partitioning and scheduling issues were naturally dictated by the physical nature and
functionality of the ensemble: i.e., the data representing each node lived on that node, and
the associated computation was scheduled on that node as well. For parallel systems,
however, we need a more flexible approach. Our insight is to use concepts from
coordination languages [22], [23] to express the partitioning and scheduling separately from
the main program, thereby allowing programmers to only concern themselves with these
details if they matter, with the important difference that we will use Meld for both the main
program and its coordination. By using the same language for both the algorithm and the
coordination, we believe that this will lead to a more expressive language as well as a more
complete system which will be amenable to automatic proof.

To test our above-stated hypothesis we extended Meld to support these partitioning and
scheduling directives, and evaluated Meld on several kernels—all pairs shortest path,
pagerank, back-propogation in neural networks, a power distribution algorithm, and loopy
belief propogation. We have investigated several scheduling methods, explored diffferent
approaches to programmer controlled coordination, and for the first time effectively
combined linear and classic logic to allow the programmer a controlled way to optimize their
usage of memory. Now that the basic implementation has been performed and validated, the
initial idea that Meld can be an effective tool for parallel programming, the next step in this
research is to re-implement the coordination primitives that we initially experimented with.
Combined with other work on proving Meld programs correct we believe that Meld can be an
effective tool for programming parallel graph-oriented algorithms.

3 METHODS, ASSUMPTIONS , AND PROCEDURES

3.1 The Meld Language
Meld is a bottom-up logic programming language based on Datalog. Like Datalog, its
execution consists of a database of facts plus a set of production rules for generating new
facts. Each fact is an association between a predicate and a tuple of values. A predicate can
be seen as a relation or table in which the tuples are its elements. Production rules have the
form p : −q1, q2, ..., qn. , logically meaning that ”if q1 and q2 and ... and qn are
true then p is true”.

3.1.1 Kinds of Facts
When a Meld program begins execution, the database is populated with axiomatic facts and
with sensing facts, derived from observations about the world. As a Meld program executes,
new facts are instantiated and added to the database. These derived facts represent program
state and are called computation facts. They are used internally by the program to do
computations and generate results.

Eventually, action facts are also derived. Syntactically, action facts are no different from

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED
6

other facts, but semantically they cause some behavior to occur outside of Meld. In the world
of modular robotics, this behavior is typically the locomotion of a robot from one location to
another. In distributed and parallel systems action facts can be used to provide an output (to
files or a terminal), interact with external functions, affect load balancing, etc. Note that
action facts are not added to the database.

3.1.2 Rules
A Meld program contains a set of rules. A rule has two main components: the head, which
indicates the facts to be generated; and the body, which contains the pre-requisites to generate
the head facts. The body may contain the following as pre-requisites: subgoals, expression
constraints or/and variable assignments. The head can only contain subgoals. Variables are
limited to the scope of the rule and must be defined in the body subgoals or through the
body variable assignments. Variables that only appear on the head are forbidden, since each
instantiated fact must be grounded, i.e., its arguments must be instantiated. The abstract syntax
for the language is presented in Figure 1.

Known Facts
Accumulated Actions

Γ ::=
Ψ ::=

·kΓ, f (t̂)
·kΨ, a(t̂)

Set of Rules
Actions

Σ ::=
A ::=

·kΣ, R
a(x̂)

Facts F ::= f (x̂)
Constraints C ::= c(x̂)
Expression
Rule

E ::=
R ::=

E ∧ EkF k ∀F.EkC
E ⇒ F kE ⇒ Akagg(F, g, y) ⇒ F

Figure 1: Abstract syntax for Meld programs

Whenever all body pre-requisites are satisfied, the head subgoals are instantiated as facts

and then they are added to the program database (except when action facts are derived). To
satisfy all pre-requisites, the body subgoals must be matched against the program database.
Both constraints and subgoals match successfully when a consistent substitution is found for
the body’s variables such that one or more facts in the database are matched. Constraint
expressions are boolean expressions that use variables from subgoals (and thus database facts)
and from variable assignments. Allowed expressions in constraints include arithmetic, logical
and set-based operations.

Each predicate used in the program must be explicitly typed. Each field is either of a basic
type or a structured type. Basic types include the integer type, floating point numbers and
the node address (see 3.2.1). A structured type includes lists of basic types.

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED
7

type virtual neighbor edge(node, node, int).
type path(node, node, min int, list node).

path(A, A, 0, [A]).

path(A, B, D + W, [A | P]) :-
edge(A, C, W),
path(C, B, D, P).

write(A, B, D, P) :-
terminated(A),
path(A, B, D, P).

Figure 2: All-Pairs Shortest Path algorithm.

3.1.3 Evaluation
Meld programs are run in a forward-chaining or bottom-up style. This means that we
consider the set of rules and the current database and look for rules that can be applied to
generate new facts or actions, updating the database or performing the right actions. We repeat
this process until we reach quiescence, meaning that no additional facts or actions can be
derived.

3.1.4 Aggregates
In contrast to Datalog, Meld does not have negation, but has set aggregates [47]. The purpose
of an aggregate is to define a type of predicate that combines the facts of that predicate into
a single fact. The definition of an aggregate includes the field of the predicate and the type
of operation to be done on the collection of facts.

Consider a predicate p(f1, ..., fm−1, agg fm, fm+1, ..., fm+n), where fm is the aggregate field
associated with the operation agg. For each combination of values f1, ..., fm−1 there will be a
set of facts matching the same combination. To calculate the aggregated fact of each
collection, we take all the fm fields and apply the agg operation. The fields between fm+1

and fm+n for the aggregated fact are chosen depending on the operation.
Meld allows several aggregate operations, namely: max, to compute the maximum value;

min, to compute the minimum value; sum, to sum all the values of the corresponding
fields; and first, to non-deterministically select the first fact.

Figure 2 presents the All-Pairs Shortest Path algorithm. We use an aggregate to select the
path with the minimum distance between two pairs of nodes. The minimum path is also
built as a list. Since the list argument is on the right of the aggregated field, this list is taken
from the path fact with the minimum distance.

3.1.5 Deletion
When facts in the database become stale (are no longer true) they are removed from the
database. This may happen if some sensing facts about the world are no longer true or if
the wrong aggregated fact was computed (Section 3.3.1 further explains this). Doing deletion

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED
8

causes all facts derived from them to become stale and also be removed from the database.
This process continues until all stale facts have been removed and the database consists
solely of true facts. The mechanisms for doing this are subtle and are explained in detail by
Ashley-Rollman et al. [3].

3.1.6 Linear Logic
One of the issues in the current Meld design is the problem of state. We have been able to
solve some of those problems by detecting sets of rules with a state argument, that is, rules
where the first argument of each predicate corresponds to the current iteration level. For
example, all the programs in the previous section, except the All-Pairs, perform iterative
refinements by indexing facts by the iteration number. Inspired by XY-stratification [31],
we detect XY cliques and then insert delete operations to delete facts in older iterations, thus
reducing the memory usage of such programs.

While the previous method solves memory issues, it is still awkward to express stateful
programs in Meld. We are currently investigating how to model state directly in the language
by leaving the limitations of classical logic and moving to a more expressive logical
foundation. Our current direction is to use linear logic [32]. By using the resource
interpretation of linear logic in a distributed context, we hope to implement new classes of
algorithms in a declarative high-level manner. A (non-distributed) example of a logic
programming language with a bottom-up semantics is provided by LolliMon [33]. LolliMon
also integrates backward chaining for local, deterministic programs which may also make
sense in our new context.

3.2 Distribution and Optimization
In this subsection we describe several code analyses and transformations performed by
our compiler that turns Meld programs into optimized code able to run in a distributed
environment. We first describe localization, a technique that allows the local evaluation of rules
in the same place and automates messaging between workers. We then describe other techniques
developed in order to reduce the use of deletion during execution, through the use of
stratification and aggregate annotations. Finally, we explain an analysis technique to deal
with memory problems in refinement algorithms.

3.2.1 Localization
Another difference between Meld and Datalog is that, in the former, the first field of each
predicate must be typed as a node address. In rules, the first argument of each subgoal is
called the home variable and refers to a node, the place where facts are stored. This
convention originated in the context of declarative networking [34], namely, in the P2
system. For modular robotics, the node is a physical identity, the robot, an independently
executing processing unit that, together with other nodes, form a graph node. For parallel
and distributed architectures, each node corresponds to an element of the graph data structure.

While each fact must be associated with some node or data structure element, a rule may
contain subgoals that refer to different nodes. In order to simplify the activation of production
rules, each rule is transformed so that all subgoals refer to the same node. The process of
localization is fundamental in the distribution of computation.

Before localization, each rule is either a local rule or a link-restricted rule. A local rule

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED
9

does not need to be transformed since only facts from the same node are needed. A link-
restricted rule is a rule where subgoals may refer to different nodes. This type of rule must be
transformed so that the correct subparts of the rule are matched on the right nodes. This is
enforced by matching all the subgoals in the node they refer to. To accomplish this, rules
use structural facts that convey the graph topology of the nodes (i.e. node edges) and
restrict how facts from different nodes can be used.

For an example, consider the code in Figure 4, where a rule refers to three different
nodes, A, B and C. To localize this rule, we first build a tree representing the connection
paths between nodes by picking an arbitrary root node, in this case, the node A, and then by
adding edges using structural facts. The resulting tree is represented in Figure 4. Note how
the constraints were placed in the bottom-most node where all the variables used in the
constraint were available. This optimization aims to reduce communication by testing
constraints as soon as possible.

Once the connection paths are known, localization transforms the original rule in Figure 3
into the send rules presented in Figure 5, that are characterized by having the same node
in the body and a different

fact2(A, 2) :-

fact1(A, A1), A1 > B1,
edge(A, B), fact1(B, B1), B1 > C1,
edge(A, D), fact1(D, D1),
edge(B, C), fact1(C, C1).

Figure 3: Original code.

Figure 4: Localization tree for code in Figure 3.

node in the head. Once a send rule body matches, all the subgoals in the head are
instantiated and then sent to the corresponding node, where the matching of the original rule
can continue, until the complete rule matches. This is the basis for communication between
nodes that makes Meld viable for distributed computation.

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED
10

3.2.2 Local Aggregates
After the program is type-checked and localized, the compiler performs the stratification
phase. In this phase, we compute the local stratification levels of the program (or local
stratums), where the predicates that are computed using local rules are ordered. This way,
structural facts appear on level 0, then the predicates that can be computed using the predicates
in previous level on level 1, and so on, until all such predicates are stratified. Strata are
separated by local aggregates, so that if several non-aggregate predicates are only used in local
rules, they will form a single stratum. For predicates that are also aggregates, they serve as
separators of strata, so that in stratum i+1, the aggregate is computed using all the facts
computed in stratum i.

By using local stratification, we can generate local aggregates - aggregates that only need
facts from the local node - by keeping track of the current stratification level. Our compiler
recognizes such situations and is therefore able to pass information to the runtime system so
that local aggregates can be generated safely once the previous local strata is fully computed.

Local aggregates are part of a class of aggregates called safe aggregates. For a safe
aggregate, we know when it should be safely generated, since all the facts needed to
compute it are available. Therefore, we do not need to employ deletion, because the aggregate
will always have the correct value. This may not happen in the case of unsafe aggregates. For
example, in the All-Pairs Shortest Path program in Figure 2, the min aggregate depends on
facts coming from remote nodes, so path is not a local aggregate. Moreover, even if, for
example, we waited for all the minimal paths to reach the target node, this may not work
because the graph may have cycles which would lead to deadlocks between nodes.

3.2.3 Neighborhood Aggregates
In Meld, the graph structure where nodes are part of, is an important abstraction. In our
experience, most aggregates that depend on remote facts are based around the neighborhood
abstraction. Therefore, it is very usual to compute the sum or minimum of a set of facts that
come through the input edges.

For these aggregates, if we have a fact for each input or output neighbor we can compute
the aggregate safely. To this end, we augment the aggregate syntax to, optionally, include a
neighborhood directive. For

 edge(X, Y) : - edge(Y, X).

fact2(A, 2) : -

fact1(A, A1), A1 > B1,
 remote1(A, B1), remote3(A).

 remote1(A, B1) : -

 edge(B, A), fact1(B, B1), B1 > C1,
 remote2(B, C1).

 remote2(B, C1) : -

 edge(C, B) , fact1(C, C1).

 remote3(A) : -

 edge(D, A), fact1(D, D1).

Figure 5: Localized rules for code in Figure 3.

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED
11

example, consider the PageRank program in Figure 6, where the calcRank aggregate is
computed as the sum of a fact from the home node and from all the input neighbors.

type virtual neighbor edge(node, node).
type pagerank(node, int, float).
type calcRank(node, int, sum float [<- edge]).
type numLinks(node, sum int).

const damping = 0.85.
const iterations = 35.
const pages = @world.

numLinks(A, 0).
numLinks(A, 1) : - edge(A, B).

pagerank(A, 0, 1.0 / float(pages)).
pagerank(A, I, V) :-

I > 0,
calcRank(A, I, T),
V = damping + (1.0 - damping) * T,
I <= iterations.

calcRank(A, I + 1, 0.0) :-

pagerank(A, I, _).
calcRank(A, I + 1, O / float(C)) :-

edge(B, A),
pagerank(B, I, O),
numLinks(B, C).

Figure 6: PageRank algorithm.

This new syntax slightly changes the semantic of the corresponding aggregate. For the case
of the sum aggregate, it indicates that the calcRank aggregate is to be computed from the
set of the first facts that generated by each neighbor. Our runtime system therefore discards
any extra facts that may come from a neighbor.

Our compiler applies a source transformation to easily tag the source of each neighbor
fact. First, it reads the direction of the arrow in the aggregate definition and looks up for the
corresponding structural subgoal in the rule. It then adds an extra argument to the subgoal
that corresponds to the source of the fact. The compiler also detects local rules and marks the
source as the home node. For the PageRank program, the affected rules would be transformed
to the new rules presented in Figure 7.

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED
12

calcRank(A, I + 1, 0.0, A) :-

pagerank(A, I, _).
calcRank(A, I + 1, O / float(C), B) : -

edge(B, A),
pagerank(B, I, O),
numLinks(B, C).

Figure 7: Transformed rules using a neighborhood aggregate.

Neighborhood aggregates are also safe aggregates, since we can compute them safely when

we receive all the needed facts from the neighborhood. Looking back at the shortest path
program, we may also use neighborhood aggregates if the graph as described by structural
facts has no cycles, thus effectively making the path aggregate a safe aggregate.

3.2.4 Detecting Iterative Refinements
While recursive rules were initially ignored in the field of deductive databases, much
research has later been the done in the evaluation of such rules. This spawned several
models such as the perfect model, well-founded semantics, stable model, etc. A particularly
attractive model, named XY-stratification [31], restricts recursive rules by imposing that the
first argument of each predicate, called the stage argument, must represent the stratification
level. This maps naturally to logical algorithms that perform iterative refinement, like the
PageRank program in Figure 6, where the rank of each page is improved from the
previous rank. This class of programs is specially amenable to space optimizations.

Recursive rules form a recursive clique called the XY clique. Our compiler recognizes such
cliques and ensures that any aggregate inside the XY clique is safe, so that there is no chance
for deletion to happen. Since the program will always perform forward progress, we eliminate
all facts from the previous iteration to improve memory usage.

For the PageRank program presented in Figure 6, the compiler detects a recursive clique
containing predicates pagerank and calcRank. The predicate calcRank is an aggregate
that depends on values coming from the neighbor nodes, so it is a safe aggregate. Our
compiler introduces delete instructions in the body where calcRank and pagerank are
consumed. Therefore, we are able to keep the memory usage constant, since we only need to
store the current iteration.

From the body of all rules that generate calcRank, only one calcRank will come from
each neighbor for each iteration and another is generated locally, so if we wait from a
calcRank from each neighbor, the aggregate is generated safely. This kind of reasoning is
easy to do since both edge, pagerank and numLinks is unique for each node, but for
more complex problems it is more difficult to deduce this. We can thus easily delete the
previous iterations as new iterations are computed because no deletion will happen. This
analysis technique allows us to keep our language within its logic realm, while keeping it
memory efficient when dealing with state.

3.2.5 Linear Logic
While state manipulation using classical logic is possible, it is much more easily
accomplished using linear logic. In addition, having linear logic available makes
implementing randomized and approximation algorithms much easier. In approximation

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED
13

algorithms, we want an approximate result that is much faster to compute than the optimal
result. Examples of such programs are the asynchronous PageRank [35] and certain classes of
belief propagation algorithms such as SplashBP [36].

An example of a randomized algorithm is presented in Appendix A.5. This program solves
the power grid problem, where we have a set of sinks and a set of sources and we want to
connect each sink to a source in such a way that no source is overloaded. We first derive a
linear fact unplugged for each sink and load fact for each source to mark the load as 0.
Then, the third rule randomly picks a source for each sink, thus consuming the initial
unplugged fact. The fourth rule selects an overloaded source and switches one of the
connected sinks to a different source in order to reduce the source’s load. This rule is applied
several times and the program will converge to a state where the load is equally distributed.
Finally, we use the proved sensing fact to detect if the pluggedIn fact has been
derived enough times already (the program could run forever) and a terminate action fact
may be generated to halt execution.

3.3 Implementing Meld on Parallel and Distributed Systems
Meld was originally implemented as an ensemble programming language, targeting modular
robotic systems such as Claytronics [1]. These systems consist of many autonomous nodes
passing messages to their physical neighbors. As such, the Meld implementation for
ensembles described by Ashley-Rollman et al. [3] addresses many of the questions of how to
implement Meld’s language features on an ensemble. Here we focus on the implementation
details unique to the parallel and distributed systems world. In addition to having different
technologies to make use of, such as OpenMPI [5], we also have new challenges to address. In
particular, a modular robotic system has a natural matching between computation and
processors. Initial facts are stored upon the robot that sensed them. Similarly, derived facts
have a natural matching to agents in the system. This distribution of data leaves little choice to
be made in the division of computation to the various nodes. The parallel and distributed
systems that we discuss here, have no natural matching of data and computation to processors,
therefore we must devise new strategies that map nodes to processors.

Instead of viewing the distributed system as a graph of processing nodes, we view it as a
graph data structure, where each data structure element (or node) stores computation facts as
its attributes and uses them for computation. The data structure elements communicate with
each other using send rules through the use of structural facts. Apart from computation and
structural facts, we also consider sensing facts and action facts. Action facts are used as a
means to write output to the terminal or to files. Sensing facts were used in modular robotics to
make the robots sense the outside world, but here we use them to sense changes in the
underlining execution model or to coordinate and balance the work load. For instance, we
have the following sensing facts: terminated, to sense when the computation has
finished; colocated, to determine if two nodes are in the same process; and
select_nodes to distribute the nodes across workers. We are exploring which sensing
facts may be useful as we apply Meld to new applications.

The All-Pairs Shortest Path program in Figure 2 is a good example program where all types
of facts are used: path is a computation fact; edge, a structural fact; terminated, a
sensing fact; and write, an action fact. The terminated fact allows the program to write
the shortest paths to the terminal once all paths are known.

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED
14

3.3.1 Execution Model
In our execution model, we have the graph of nodes as a data structure and a set of workers. A
worker is a processing unit that is either a thread or a process. A worker is able to process
facts for any node. The processing of a fact from a given node is thus the basic unit of work in
our parallel system. We impose two restrictions on work allocation. First, a node may only be
processed by at most one worker at a given point in time. Second, a worker may only
process one node at the same time. This disallows the manipulation of a node by multiple
workers.

Evaluation of bottom-up logic programs can be done using several techniques, one of the
most well- known being the semi-naı̈ve fixpoint evaluation [37], [38]. However, these
techniques are more appropriate for a centralized evaluation and are expensive in a distributed
environment. To this end, we use the pipelined semi-naı̈ve evaluation from P2 [34], which
relaxes the semi-naı̈ve fixpoint by processing each new fact separately. When a fact is
proven to be true, all rules that use the fact in their body are selected as candidate rules.
For each candidate, the rest of its rule body is matched against the facts in the node, so that
new facts can be proved. This forces workers to process new facts as soon as they are
generated.

Since parallel programs are not as dynamic as ensemble programs, we aim to avoid the
generation of aggregates from partial information. For programs with only safe aggregates,
this is not an issue, however, for programs with unsafe aggregates we use deletion if the
aggregated fact is invalidated later. This, however, may lead to a significant part of the
computation being invalidated and recomputed. For example, in the All-Pairs Shortest Path
program in Figure 2, minimal paths may be computed based on partial information and
must be invalidated.

Due to the non-deterministic nature of parallel and distributed workers, the amount of
invalid compu- tation is highly variable, which degrades performance since execution times
may vary widely between executions. In order to reduce this problem, we introduce the
notion of a computation round. Each round proceeds as follow:

• Workers process all regular facts and safe aggregates;
• When a worker has no more work left to do, it enters into the idle state;
• Once the graph reaches a quiescent state, that is, when all workers are in the idle

state, workers synchronize using a termination barrier;
• Unsafe aggregates are then generated by all workers;
• If some aggregate was generated (or deletion is to be done), it is considered as new

work and the next computation round will be started;
• If no aggregates were generated, the computation is marked as complete and then
finishes.
Since a termination barrier, a global operation, is used between computation rounds,

parallelization is likely improved when the number of rounds is minimized. Making the
generation of aggregates safe is thus an important endeavor, since it eliminates the need for
more than one computation round and thus increases asynchronicity between workers and the
throughput of the whole system. In practice we have not ever had to use an aggregate that
the compiler could not prove was unsafe and all the programs had no intermediate
computation rounds.

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED
15

3.3.2 Graph Clustering
The goal of the runtime system is to balance work between workers. We thus want to maximize
throughput and parallel efficiency by using a specific strategy that maps workers to new
facts. Throughput is maximized when workers can process more work without the need to
communicate with other workers. One way to tackle this is to cluster closer nodes and
partition the clusters between workers. Since communication between nodes of different
clusters is reduced, communication between workers is also reduced, which increases
locality in the computation.

We introduced the node address constant to make it possible to declare all the graph
information in the source code. Our compiler is modified to deduce the number of nodes in the
graph and to build its structure from structural axioms. Each address is prepended by the
symbol @ (for example, edge(@1,@2)). During compilation, and after the parse and type-
checking phases, the graph clustering phase is called. It builds an internal representation of
the graph, by mapping each node address a to a normalized node address n.

Formally, this mapping is represented by the bijective function M (x), where the domain
is the set of nodes described in the program’s source code and the codomain is the discrete
interval [0, N], where N

Figure 8: Clustering using a breadth-first method.

is the number of nodes in the graph. The byte code of a Meld program includes all the pairs
(x, M (x)) so that the runtime system can put this information to use.

We have four methods for defining the function M , namely:
• Randomized: the mapping is done randomly.
• Naive: nodes are ordered as they appear in the source code.
• Breadth-First: the mapping is built by picking an arbitrary node, nzero , and by defining M
(nzero) = 0.

Next, we pick all neighbors of nzero and define their mappings in increasing order.
Recursively, we pick their neighbors in a breadth-first fashion, until all the nodes have
been visited.

• User Defined: the mapping is done through a worker axiom called select_nodes, that
accepts as argument the order of the nodes.

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED
16

Using a static approach to work balancing, we can easily slice the codomain of function M
(x) to distribute the nodes across T workers. It is also trivial to know the worker of a node n by
computing the following expression: min(n/(N/T), N − 1), where N is the number of nodes.

The breadth-first method is used with the intent of clustering closer nodes in an ordered
fashion. While not optimal, this method is simple and very efficient. For example, consider the
graph in Figure 8. The node addresses represented are the ones included in the source code.
Using the breadth-first method and starting with node 1, we get the following order: 1, 2, 3, 7,
5, 6 and 4. If we use a static approach with 2 workers, worker 1 would get nodes 1, 2, 3 and 7
and worker 2 would get node 5, 6 and 4. With this division only 3 out of 11 paths of
communication exist between worker 1 and worker 2.

While for some programs it makes sense to programmatically define a specific node
ordering, automatic ordering is an important endeavor since it fully automatizes the ordering
phase. In the future, we intend to explore other techniques such as the METIS partitioning
method [39].

3.3.3 Multithreaded Execution
Our Virtual Machine (VM) supports multithreaded execution using Pthreads and has been
developed to explore different scheduling strategies. Here, we outline the strategies to
distribute computation between threads.

• Static Division (SD)
In this strategy, the nodes are divided uniformly between threads and each thread has
a queue of active nodes. The nodes themselves have queues of new facts. An active node
is a node with some facts to process.
To obtain work, a thread pops an active node out of its queue and then processes all the
node facts until the node’s queue is empty. In this case, the node is then marked as
inactive. When a local or send rule is fired and the corresponding target node N is owned
by the executing thread, the new fact is pushed into the node’s queue. If N is currently
inactive, it must be set as active and then reinserted into the queue of active nodes of the
executing thread. If a send rule is fired and N is located on another thread T , the
procedure is similar, except we must take extra care when reinserting the node into T ’s
queue.
Once a thread has no more active nodes to process, it enters into the idle state. Here, the
thread tries to synchronize with the other threads in order to terminate the computation
round. We adapted the termination barrier proposed by Flood et al. [40] to implement
termination detection. It includes an atomic counter representing the number of active
threads, a boolean flag for each thread representing the current thread state and a global
sense flag that is activated when the counter reaches zero. This is used in all the
multithreaded strategies.

• Dynamic Division With Work Stealing (DD)
In DD each thread starts with a pre-defined set of nodes as in SD. However, the
division of nodes may not remain static and nodes can move to other threads if threads
start starving for work. When a thread has no more work, it enters into the idle state,
whereupon the thread selects a random target thread to steal nodes from its queue.
Each thread has a set of nodes and each node is augmented with a field called owner
that points to the owner thread. The set of nodes is also used to generate unsafe
aggregates during the final phase of each computation round.

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED
17

• Dynamic Division without Ownership (DDWO)
DDWO is a dynamic scheduler like DD, except that nodes are not owned. There is only
one queue of active nodes from where threads can pop nodes. The advantage of this
method is that there are no costs in stealing nodes. However, there may exist some
contention when accessing the global queue. Several programs such as Neural Networks,
where the flow of computation moves from different sets of nodes, can take advantage of
this scheduling strategy.

3.3.4 Distributed Computation
Our VM uses the MPI subsystem to do distributed computation. For each MPI process, we
may have several threads executing concurrently. There is a leader thread per process that
works with other leader threads to detect termination of computation rounds.

The communication between threads now depends on where the other thread is running. If
it is on the same process, all the rules presented before apply. If, however, they are in different
processes, we must use message passing. Each thread can independently send messages to
remote threads. New facts instantiated from send rules that must be sent to remote threads
are not sent immediately. Instead, each thread has a data structure called the message buffer
for each remote thread, where new facts are marshaled and buffered to be sent later. When the
message buffer reaches a certain size (usually, the MPI message limit), all the facts in the
buffer are sent using a single MPI operation.

Send operations are done asynchronously, so that threads can put the message on the MPI
subsystem and then continue working, without waiting for the remote thread to receive the
message. However, the memory used to marshal facts must be freed later, after the thread
makes sure the messages were received. For this, each thread maintains several lists of
request handlers. Each request handler is a pair with a memory pointer to a list of
serialized facts and a MPI request object. Subsets of request handlers from the request list
are then checked periodically to test if the send operation has been completed.

Facts that need to be sent to remote threads are indexed and sent directly to the
corresponding remote thread. When receiving work, threads ask for their corresponding work
from the MPI subsystem. When all threads in a process are idle, all threads synchronize and
the leader thread communicates with other leader threads to detect termination. The detection
of termination is done using the Dijkstra-Safras token-ring based algorithm [41].

While the division of nodes between threads in the same process is done using different
strategies, the division between processes is done statically. We want to explore in the
future if a more dynamic approach may be useful, however this may require the movement of
nodes in the network, which may be too costly.

3.4 Implementation Details

3.4.1 Compiler
The compiler is a 3500 lines program written in Common Lisp. After reading the source
code file, the compiler builds the Abstract Syntax Tree (AST) and then compiles it into a
list of instructions, one list for each predicate. These instructions and the ordering of nodes
are then written into the byte-code file.

3.4.2 Virtual Machine
The VM is implemented in C++ and makes use of the Standard Template Library and Boost.

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED
18

We use the Boost.Threads package for multithreaded code and Boost.MPI as an abstraction to
OpenMPI. To start a program, the VM reads the byte-code file passed as an argument and sets
up the threaded environment, and optionally communicates with other remote processes to
coordinate distributed execution. The machine architecture was designed with extensibility
in mind: we have a base class for all schedulers that can be extended to implement new
scheduling strategies. We next describe some interesting details of our machine.

• Lists
Lists are represented as cons cells. We use reference counting to garbage collect
unused lists with the use of an atomic integer for each cell.

• Queues
We use lock-free data structures whenever possible. The queues used in SD only have
one thread popping from the queue while having multiple pushers. These are lock-free
queues where only the push operation needs to use Compare-And-Set (CAS) operations
and the pop operation only needs to adjust the sentinel node (there is no race condition
between the two operations). These queues are adapted from [42]. Since predicates are
stratified, we use a binary tree bounded priority queue [43] for queues of facts, another
lock-free data structure, where each level contains a lock-free queue. For the schedulers
DD and DDWO, the queue of nodes uses locking since the queue has multiple workers
pushing or popping nodes. The queue of facts for each node is the same as before, a lock-
free binary tree bounded priority queue.

• Tries
Facts are stored using the trie data structure. Tries are trees where facts are indexed by the
common prefix. Our trie implementation was inspired by the work done in tabling for
Prolog [44], where tries were used to store Prolog terms. The original design maintains
each trie level as a simple linked list, which may be replaced by a hash table if this
list gets too big in order to make search faster. In our implementation, we may also
need to delete items from the trie, so we optimized the data structure to make deletion
an efficient operation. Instead of simple linked lists, we use double linked lists and trie
nodes may point to their hash table buckets so that we can delete the hash table in
certain situations.
Each node uses a trie per predicate to store facts. During evaluation of rule bodies,
we build a match object, which matches some arguments of the target predicate to
instantiated values, so that by searching the predicate trie from top to bottom, we can
easily discard invalid trie branches. For a collection of facts that need to be aggregated,
we use a separate trie for such facts. When we need to iterate over the collection, we
use a double linked list of trie leaves (that is maintained by the trie operations) for direct
access of each stored fact.

• Memory
Memory allocation is done using pools of memory objects local to each thread. This
reduces con- tention in memory allocation.

• Barriers
During initialization we sometimes need to synchronize the threads. We use a
Combining Tree Barrier [45] with a global sense flag for these situations.
During each computation round, we need to assess if we should terminate or continue
to the next round. We use a special barrier here, formed by a global atomic counter, a
global triple-state flag and a local triple-state flag, one for each thread. After a thread

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED
19

generates its aggregates, it decrements the global counter. If this is the leader thread, it
waits for the counter to reach zero. The other threads wait for a change in the global flag
(by comparing it to their local flag). The state of each flag can be 0, 1 or 2, shifting to 1
or 2, depending if the current round is even or odd. When the leader thread changes the
global flag, the other threads read the result and change their flags accordingly. If the
global state is set to zero, it means that the computation is over. For synchronization
between processes, we use the MPI_Allreduce operation after all the threads in the
process have synchronized.

• Initialization
During initialization, each node needs to initialize its edge facts and axioms. To do this
efficiently, we construct an hash table with N buckets for the init procedure of the
byte-code, where N is the number of nodes. Each node reads its bucket and jumps
directly to its specific code.

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED
20

4 RESULTS AND DISCUSSION
We have written several algorithms to experiment with our compiler and runtime system. All
of them use recursive rules with aggregates and, except for the All-Pairs Shortest Path
program, they work by iterative refinement. The programs written are the following [48]:

• PageRank algorithm;
• All-Pairs Shortest Path algorithm;
• Neural network training using the back-propagation algorithm;
• A naive loopy belief propagation algorithm to de-noise images.
The All-Pairs Shortest Path algorithm (presented before in Figure 2) is prone to deletion and

needs several computation rounds to complete because it has one unsafe aggregate. We
used two different datasets: US 500 Airports, a graph of the 500 most important US
airports with the corresponding weighted connections [49]; and grid, a configuration
where the graph forms a square grid with cycles.

The Neural Network algorithm uses XY-stratification to order each training pattern and
to generate improved neural link weights in subsequent iterations during the back-
propagation phase. We used a neural network with 3 layers: input, hidden and output layers.
We have 32 neurons in the input layer, 16 in the hidden layer and 16 in the output layer. The
number of training examples is 500.

In the loopy de-noise algorithm we use a 100 by 100 grid configuration of pixels that
correspond to the image we want to de-noise. We start with a single belief value for each pixel
that is updated as iterations advance. Both the belief facts and the messages exchanged
between the pixels are XY-stratified, so older values are deleted, and only the most recent
belief and messages values are kept.

For the PageRank program, we use several graph configurations, namely: grid, where the
pages form

a square grid; cycle, where nodes are linked sequentially and the last node links to the first
one; and a more realistic dataset of web links called search engines [50]. We
compute the rank values by using 35 iterations.

4.1 Experimental Results
In our experimental setup, we used a machine with four AMD Six-Core Opteron TM 8425 HE
(2100 MHz) chips (24 cores) and 64 GB of DDR-2 667MHz (16x4GB) RAM, running
GNU/Linux (kernel 2.6.31.5- 127 64 bits). We compiled our virtual machine using GCC
4.4.5 (g++) with the flags -O0 -std=c+0x -march=x86-64. The libraries used were
OpenMPI 1.4.3 and Boost 1.41. For MPI we executed all the processes on the same machine,
so these results will be somewhat advantageous to this scheduler since the costs of network
communication are nonexistent.

We developed a simple sequential scheduler that avoids the use of parallel and distributed
synchro- nization mechanisms and is used as a comparison for all the other strategies. Note
that for all the Meld programs, the nodes were ordered using the breadth-first approach.

The results for the PageRank program are presented in Figure 9. Both the grid 150
and the cycle 50000 datasets are regular datasets, so we should expect similar results
for all the schedulers, since most nodes have an equal number of connections and thus a
static division should suffice to balance work. In these benchmarks, DD tends to perform
slightly better than the other schedulers (except in the last benchmark) and DDWO performs
worse than most schedulers, even against the static MPI. This is explained by the contention

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED
21

when accessing the queue of active nodes. This rarely happens in DD since the work is well
distributed initially, so there is little work stealing.

The search engines benchmark shows us how the PageRank program behaves in a
more realistic graph. Notably, the dynamic schedulers all perform better than the static
schedulers. As expected, MPI performs worse than SD, but its behavior is very similar to SD.
We think this difference results from the extra work performed by MPI in serializing and
then deserializing new facts.

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED
22

(a) PageRank with dataset grid 150.

(b) PageRank with dataset cycle 50000.

 (c) PageRank with dataset search engines.

Figure 9: Performance results for the PageRank datasets. Note that both DD and
DDWO come up on top and that MPI and DD usually trail each other, since they are

both static schedulers.

In Figure 10 we present the speedups for the Loopy Belief Propagation (BP) and Neural
Network (NN) program. The BP program is a very regular program: the graph structure
forms a grid and the nodes simply exchange messages with its neighbors to improve their
belief value. BP is thus a program where the work is easily balanced by just doing a static
division. The evidence validates this assumption since all the schedulers perform equally
well, even the static ones. In the speedup line, DD performs as well as SD for all the
number of processors. Instrumentation of execution of the virtual machine indicate that little
work stealing goes in DD, which explains why SD and DD perform identically.

The NN program is very different than the previous programs. For each training pattern,
we start by computing the activations of the input, then the hidden and finally the output
layer. Then, on a second round, we compute the deltas of each node, starting from the output
layer to the hidden layer, and finally to the input layer. This pattern happens several times,

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED
23

which makes it difficult to balance work across workers. This can easily be seen in the case
of static schedulers, namely, MPI and SD, where the results are not as good as the other
schedulers. Another important aspect relates to graph clustering. Notice that when the number
of workers is 14, the speedup decreases suddenly, but increases a lot when the number of
workers is 16. This effect is directly related to the graph partitioning used. In the last case,
the nodes are evenly allocated more horizontally, which makes it more suitable for load
balancing, since some layer

 (a) Loopy Belief Propagation
benchmark.

 (b) Neural Network benchmark.

Figure 10: Performance results for the Neural Network (NN) and Belief Propagation (BP)

programs. While BP is a program with a very regular and clear-cut computational
pattern, in NN the communication and computation is not as regular, therefore it

requires dynamic schedulers to perform well.

is doing some work at any given time. If a worker only gets nodes from the same layer,
it will need to sit idle and wait for work if the computation is being performed on other
layers. In relation to DD and DDWO, we observe that the latter usually beats the former. This
happens because, as the number of workers increases, randomly selecting a thread to steal
work from may not be as successful as using a global queue of nodes, since the target
thread may be out of work.

In Figure 11 we present the results for the All Pairs Shortest Paths program. We
experimented with two different versions of this program. In version A, we just compute the
shortest distance and in the version B, we compute both the distance and the corresponding
path as a list of nodes.

We experimented with the two versions with the grid dataset, Figure 11 (a) and (b),
respectively. In both A and B versions, the threaded schedulers perform well, and the same
scalability pattern can be observed. Moreover, note that in B the speedups decrease slightly,
because we need to compute both the minimum distance and the corresponding path. This
requires the construction of several lists and sublists during runtime that are eventually

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED
24

shared between threads, thus reducing overall performance. Sublists references must also be
maintained which requires more synchronization costs between threads. For the MPI
scheduler, the slowdown is more noticeable, but here we need to serialize and deserialize the
lists, which requires more communication between processes.

For the US 500 Airports, we observed similar results to the search engines
PageRank pro- gram. The dynamic schedulers obtain very good speedups while the static ones
perform badly. As usual, MPI follows the behavior of SD.

 (a) All Pairs with dataset grid 35.

 (b) All Pairs with dataset grid 25 (paths
included).

(c) All Pairs with dataset US 500 Airports.

Figure 11: Performance results for the All Pairs Shortest Paths program. In (a) and (c)

only the shortest distance is computed, while in (b) both the minimal distance and the
corresponding path are computed.

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED
25

5 CONCLUSION
Over the course of this project we have sucessfully ported Meld from its original use as a
programming language for Claytronics and other physically embedded massively distributed
systems to more traditional parallel machines including multi-core machines and those that
support MPI. The exploration of Meld as a parallel programming language is still ongoing.
However, it already shows promise for creating concise and understandable programs which
run efficiently.

In addition to the porting of Meld to more traditional parallel machines we have
incorportated linear logic into the language supporting a way to manage state change in a way
that will lend itself to proving programs correct. In work related to this grant we have shown
that the semantics of this approach is sound and complete.

We are still experimenting with various coordination primitives and will continue to push
on algorithm development particularly for graph-based aglorithms which exhibit irregular
parallelism.

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED
26

REFERENCES

[1] S. C. Goldstein, J. D. Campbell, and T. C. Mowry, “Programmable matter,” IEEE Computer, vol. 38, no. 6, pp. 99–
101, June 2005.

[2] M. Yim, W.-M. Shen, B. Salemi, D. Rus, M. Moll, H. Lipson, E. Klavins, and G. S. Chirikjian, “Modular self-
reconfigurable robot systems [grand challenges of robotics],” Robotics and Automation Magazine, IEEE, vol. 14, no. 1,
pp. 43–52, March 2007.

[3] M. P. Ashley-Rollman, P. Lee, S. C. Goldstein, P. Pillai, and J. D. Campbell, “A language for large ensembles of
independently executing nodes,” in Proceedings of the International Conference on Logic Programming (ICLP ’09),
July 2009.

[4] J. D. Ullman, Principles of Database and Knowledge-Base Systems: Volume II: The New Technologies. New York,
NY, USA: W. H. Freeman & Co., 1990.

[5] E. Gabriel, G. E. Fagg, G. Bosilca, T. Angskun, J. J. Dongarra, J. M. Squyres, V. Sahay, P. Kambadur, B. Barrett,
A. Lumsdaine, R. H. Castain, D. J. Daniel, R. L. Graham, and T. S. Woodall, “Open MPI: Goals, concept, and design of
a next generation MPI implementation,” in Proceedings, 11th European PVM/MPI Users’ Group Meeting, Budapest,
Hungary, September 2004, pp. 97–104.

[6] R. S. Nikhil, “A multithreaded implementation of id using p-risc graphs,” in Proceedings of the 6th International Workshop
on Languages and Compilers for Parallel Computing. London, UK: Springer-Verlag, 1994, pp. 390–405.

[7] D. E. Culler, S. C. Goldstein, K. E. Schauser, and T. von Eicken, “Tam—a compiler controlled threaded abstract
machine,” J. Parallel Distrib. Comput., vol. 18, no. 3, pp. 347–370, 1993.

[8] P. Hudak, S. Peyton Jones, P. Wadler, B. Boutel, J. Fairbairn, J. Fasel, M. M. Guzmán, K. Hammond, J. Hughes, T.
Johnsson, D. Kieburtz, R. Nikhil, W. Partain, and J. Peterson, “Report on the programming language haskell: a non-
strict, purely functional language version 1.2,” SIGPLAN Not., vol. 27, no. 5, pp. 1–164, 1992.

[9] G. E. Blelloch and J. Greiner, “A provable time and space efficient implementation of nesl,” in ICFP ’96: Proceedings of
the first ACM SIGPLAN international conference on Functional programming. New York, NY, USA: ACM, 1996, pp.
213–225.

[10] J. T. Feo, D. C. Cann, and R. R. Oldehoeft, “A report on the sisal language project,” J. Parallel Distrib. Comput., vol.
10, no. 4, pp. 349–366, 1990.

[11] W. Thies, M. Karczmarek, and S. Amarasinghe, “Streamit: A language for streaming applications,” in International
Conference on Compiler Construction, Grenoble, France, Apr 2002. [Online]. Available:
http://groups.csail.mit.edu/commit/papers/02/streamit-cc.pdf

[12] M. Gupta, S. Midkiff, E. Schonberg, V. Seshadri, D. Shields, K.-Y. Wang, W.-M. Ching, and T. Ngo, “An hpf
compiler for the ibm-sp2,” in Supercomputing ’95: Proceedings of the 1995 ACM/IEEE conference on Supercomputing
(CDROM). New York, NY, USA. ACM, 1995, p. 71.

[13] D. D. Chamberlin and R. F. Boyce, “Sequel: A structured english query language,” in FIDET ’74: Proceedings of the
1974 ACM SIGFIDET (now SIGMOD) workshop on Data description, access and control. New York, NY, USA:
ACM, 1974, pp. 249–264.

[14] M. Isard, M. Budiu, Y. Yu, A. Birrell, and D. Fetterly, “Dryad: Distributed data-parallel programs from sequential
building blocks,” in European Conference on Computer Systems (EuroSys), Lisbon, Portugal, March 21-23 2007, pp.
59–72, also as technical report MSR-TR-2006-140. [Online]. Available: http://budiu.info/work/eurosys07.pdf

[15] Y. Yu, M. Isard, D. Fetterly, M. Budiu, Ú . Erlingsson, P. K. Gunda, and J. Currey, “DryadLINQ: A system for
general-purpose distributed data-parallel computing using a high-level language,” in Symposium on Operating
System Design and Implementation (OSDI), San Diego, CA, December 8-10 2008, p. 14. [Online]. Available:
http://budiu.info/work/DryadLINQ.pdf

[16] G. Czajkowski, “Large-scale graph computing at google,” googleresearch.blogspot.com/2009/06/large-scale-graph-
computing-at-google. html, June 2009.

[17] C. Olston, B. Reed, U. Srivastava, R. Kumar, and A. Tomkins, “Pig latin: a not-so-foreign language for data
processing,” in SIGMOD ’08: Proceedings of the 2008 ACM SIGMOD international conference on Management of
data. New York, NY, USA: ACM, 2008, pp. 1099–1110.

[18] H. Gallaire and J. Minker, Eds., Logic and Data Bases. Perseus Publishing, 1978.
[19] B. T. Loo, T. Condie, M. Garofalakis, D. E. Gay, J. M. Hellerstein, P. Maniatis, R. Ramakrishnan, T. Roscoe, and I.

Stoica, “Declarative networking: language, execution and optimization,” in Proc. of the 2006 ACM SIGMOD int’l
conf. on Management of data. New York, NY, USA: ACM Press, 2006, pp. 97–108.

[20] ——, “Declarative networking,” Communications of the ACM, vol. 52, no. 11, pp. 87–95, 2009.
[21] D. Chu, A. Tavakoli, L. Popa, and J. Hellerstein, “Entirely declarative sensor network systems,” in Proceedings of the

32nd international conference on Very large data bases, 2006, pp. 1203–6.
[22] S. Lucco and O. Sharp, “Parallel programming with coordination structures,” in POPL ’91: Proceedings of the 18th

ACM SIGPLAN- SIGACT symposium on Principles of programming languages. New York, NY, USA: ACM, 1991,
pp. 197–208.

[23] D. Gelernter and N. Carriero, “Coordination languages and their significance,” Communications of the ACM, vol. 35, no.
2, pp. 97–107, 1992.

[24] K. M. Kahn and M. S. Miller, Ecology of Computation. North-Holland, 1988, ch. Language Design and Open
Systems.

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED
27

[25] J. Dongarra, D. Sorenson, and P. Brewer, Aspects of Computation on Asynchronous Processors. North-Holland, 1988,
ch. Tools and methodology for programming parallel processors, pp. 125–138.

[26] S. C. Goldstein, T. C. Mowry, J. D. Campbell, M. P. Ashley-Rollman, M. D. Rosa, S. Funiak, J. F. Hoburg, M. E.
Karagozler, B. Kirby, P. Lee, P. Pillai, J. R. Reid, D. D. Stancil, and M. P. Weller, “Beyond audio and video: Using
claytronics to enable pario,” AI Magazine, vol. 30, no. 2, July 2009.

[27] C. Group, “Claytronics project pages,” www.cs.cmu.edu/∼claytronics, 2009.
[28] M. P. Ashley-Rollman, S. C. Goldstein, P. Lee, T. C. Mowry, and P. Pillai, “Meld: A declarative approach to

programming ensembles,” in Proceedings of the IEEE International Conference on Intelligent Robots and Systems
(IROS ’07), October 2007. [Online]. Available: http://www.cs.cmu.edu/∼claytronics/papers/ashley-rollman-iros07.pdf

[29] D. Dewey, S. S. Srinivasa, M. P. Ashley-Rollman, M. De Rosa, P. Pillai, T. C. Mowry, J. D.
Campbell, and S. C. Goldstein, “Generalizing metamodules to simplify planning in modular robotic systems,”
in Proceedings of IEEE/RSJ 2008 International Conference on Intelligent Robots and Systems IROS ’08,
Nice, France, September 2008. [Online]. Available: http://www.cs.cmu.edu/∼claytronics/papers/dewey-iros08.pdf

[30] M. P. Ashley-Rollman and P. Pillai, “Claytronics - gates hillman complex,” 2009. [Online]. Available:
www.youtube.com/watch?v= Vu6RnR-0Dtw

[31] C. Zaniolo, N. Arni, and K. Ong, “Negation and aggregates in recursive rules: the ldl++ approach,” in Deductive and
Object-Oriented Databases, 1993, pp. 204–221.

[32] J.-Y. Girard, “Linear logic,” Theor. Comp. Sci., vol. 50, pp. 1–102, 1987.
[33] P. Ló pez, F. Pfenning, J. Polakow, and K. Watkins, “Monadic concurrent linear logic programming,” in

Proceedings of the 7th International Symposium on Principles and Practice of Declarative Programming (PPDP’05),
A.Felty, Ed. Lisbon, Portugal: ACM Press, July 2005, pp. 35–46.

[34] B. T. Loo, T. Condie, M. Garofalakis, D. E. Gay, J. M. Hellerstein, P. Maniatis, R. Ramakrishnan, T. Roscoe, and I.
Stoica, “Declarative networking: language, execution and optimization,” in Proc. of the 2006 ACM SIGMOD int’l
conf. on Management of data. New York, NY, USA: ACM Press, 2006, pp. 97–108.

[35] B. Lubachevsky and D. Mitra, “A chaotic asynchronous algorithm for computing the fixed point of a nonnegative
matrix of unit spectral radius,” J. ACM, vol. 33, pp. 130–150, January 1986. [Online]. Available:
http://doi.acm.org/10.1145/4904.4801

[36] J. Gonzalez, Y. Low, and C. Guestrin, “Residual splash for optimally parallelizing belief propagation,” in In Artificial
Intelligence and Statistics (AISTATS), Clearwater Beach, Florida, April 2009.

[37] I. Balbin and K. Ramamohanarao, “A generalization of the differential approach to recursive query evaluation,”
The Journal of Logic Programming, vol. 4, no. 3, pp. 259 – 262, 1987. [Online]. Available:
http://www.sciencedirect.com/science/article/pii/0743106687900045

[38] F. Bancilhon, “Naive evaluation of recursively defined relations,” in On Knowledge Base Management Systems
(Islamorada). New York, NY, USA: Springer-Verlag New York, Inc., 1985, pp. 165–178.

[39] G. Karypis and V. Kumar, “A fast and high quality multilevel scheme for partitioning irregular graphs,” SIAM J.
Sci. Comput., vol. 20, pp. 359–392, December 1998. [Online]. Available:
http://dx.doi.org/10.1137/S1064827595287997

[40] C. H. Flood, D. Detlefs, N. Shavit, and X. Zhang, “Parallel garbage collection for shared memory multiprocessors,” in
Proceedings of the 2001 Symposium on JavaTM Virtual Machine Research and Technology Symposium - Volume 1,
ser. JVM’01. Berkeley, CA, USA: USENIX Association, 2001, pp. 21–21. [Online]. Available:
http://portal.acm.org/citation.cfm?id=1267847.1267868

[41] E. W. Dijkstra, “Shmuel Safra’s version of termination detection,” Jan. 1987, unpublished note. [Online]. Available:
http://www.cs.utexas.edu/users/EWD/ewd09xx/EWD998.PDF

[42] M. M. Michael and M. L. Scott, “Simple, fast, and practical non-blocking and blocking concurrent queue algorithms.”
in PODC’96, 1996, pp. 267–275.

[43] N. Shavit and A. Zemach, “Diffracting trees,” in In Proceedings of the 5th Annual ACM Symposium on Parallel
Algorithms and Architectures. ACM, 1994.

[44] I. V. Ramakrishnan, P. Rao, K. Sagonas, T. Swift, and D. S. Warren, “Efficient Tabling Mechanisms for Logic Programs,”
in International Conference on Logic Programming. The MIT Press, 1995, pp. 687–711.

[45] P.-C. Yew, N.-F. Tzeng, and D. H. Lawrie, “Distributing hot-spot addressing in large-scale multiprocessors,” in
Interconnection networks for high-performance parallel computers, I. D. Scherson and A. S. Youssef, Eds. Los
Alamitos, CA, USA: IEEE Computer Society Press, 1994, pp. 302–309. [Online]. Available:
http://portal.acm.org/citation.cfm?id=201173.201223

[46] Datalog is related to Prolog, but restricts usage (one important restriction is that it is forward-chaining) so it is sound
and complete.

[47] It has been shown in [31] that set aggregates can be implemented using negation, however we implement aggregates
directly, without using source code transformation.

[48] All programs are accessible here: https://github.com/flavioc/meld/tree/master/benchs/progs/sources.
[49] Obtained from http:toreopsahl.com/datasets/
[50] Obtained from http://www.cs.toronto.edu/∼tsap/experiments/download/download.html

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED
28

APPENDIX
Here we list the source code for the Meld programs we evaluated.

A.1 All Pairs
This program computes the shortest distance and the corresponding path between all pairs of
nodes in a graph.

type path(node, node, min int, list node).

path(A, A, 0, [A]).

path(A, B, D + W, [A | P]) :-
edge(A, C, W),
path(C, B, D, P).

A.2 Pagerank
Pagerank computes the rank of a node.

type pagerank(node, int, float).
type calcRank(node, int, sum float [<- edge]).
type numLinks(node, sum int).

const damping = 0.85.
const iterations = 35.
const pages = @world.

numLinks(A, 0).
numLinks(A, 1) :- edge(A, B).

pagerank(A, 0, 1.0 / float(pages)).
pagerank(A, I, V) :-

I > 0,
calcRank(A, I, T),
V = damping + (1.0 -
damping) * T, I <=
iterations.

calcRank(A, I + 1, 0.0) :-

pagerank(A, I, _).
calcRank(A, I + 1, O / float(C)) :-

edge(B, A),
pagerank(B, I, O),
numLinks(B, C).

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED
29

A.3 Neural Network
The Neural Network program implements the training phase of the back-propagation
algorithm for neural networks.

type activated(node, int, float).
type expected(node, int, float).
type receive(node, int, sum float [<- link]).
type hiddengrad(node, int, float).
type allhiddengrad(node, int, sum float [-> link]).
type outgrad(node, int, float).
type delta(node, int, node, float).

extern float sigmoid(float).

const lrate = 0.01.

receive(A, I, W * V) :-

link(B, A),
weight(B, I, A, W),
activated(B, I, V).

activated(A, I, sigmoid(V)) :-

receive(A, I, V).

delta(A, I, B, lrate * V * G) :-

hidden(A),
activated(A, I, V),
link(A, B),
outgrad(B, I, G).

outgrad(A, I, G * (1.0 - G) * (E - G)) :-

expected(A, I, E),
activated(A, I, G).

allhiddengrad(A, I, V * W) :-

hidden(A),
link(A, B),
weight(A, I, B, W),
outgrad(B, I, V).

hiddengrad(A, I, V * (1.0 - V) * T) :-

activated(A, I, V),
allhiddengrad(A, I, T).

delta(A, I, B, lrate * V * G) :-

input(A),
activated(A, I, V),

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED
30

link(A, B),
hiddengrad(B, I, G).

weight(A, I + 1, B, O + D) :-
weight(A, I, B, O),
delta(A, I, B, D).

A.4 Belief Propagation
This programs implements the naive loopy belief propagation algorithm.

type route edge(node, node).
type coord(node, int).
type potential(node, list float).
type belief(node, int, list float).
type globalpotential(node, list float).
type message(node, int, node, list float).

type beliefmul(node, int, sum list float [-> edge]).

extern list float normalize(list float).
extern list float damp(list float, list float, float).
extern list float divide(list float, list float).
extern list float convolve(list float, list float).
extern list float addfloatlists(list float, list float).

const iterations = 35.
const damping = 0.1.

beliefmul(A, I + 1, L) :- edge(A, B), message(B, I, A, L).

belief(A, I, normalize(addfloatlists(L, P))) :-
beliefmul(A, I, L), potential(A, P), I <= iterations.

message(A, I + 1, B, damp(Convolved, OldOut, damping)) :-

I <= iterations,
belief(A, NI, Belief),
globalpotential(A, GP),
NI = I + 1,
edge(A, B),
message(B, I, A, OldIn),
message(A, I, B, OldOut),
Cavity = normalize(divide(Belief, OldIn)),
Convolved = normalize(convolve(GP, Cavity)).

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED
31

A.5 Power Grid
type route edge(node, node).
type source(node).
type sink(node, int).
type linear pluggedIn(node, node).
type linear unplugged(node).
type linear load(node, float).

unplugged(Sink) :- sink(Sink, _).
load(Source, 0) :- source(Source).

pluggedIn(Sink, Source),
load(Source, OldAmt + Amt) :-

unplugged(Sink),
!sink(Sink, Amt),
!edge(Sink, Source),
!source(Source), load(Source, OldAmt).

pluggedIn(Sink, NewSource),
load(OldSource, OldSourceAmt - Amt),
load(NewSource, NewSourceAmt + Amt) :-
pluggedIn(Sink, OldSource),
!edge(Sink, NewSource),
load(OldSource, OldSourceAmt),
OldSourceAmt > 1,
load(NewSource, NewSourceAmt),
!sink(Sink, Amt),
NewSourceAmt + Amt < OldSourceAmt || rand().

terminate() :- proved(pluggedIn) > MAX_ITERATIONS.

	1 ABSTRACT
	2 INTROCUTION
	2.1 Approaches to Parallel Programming
	2.2 Our Approach with the Meld Language: from Ensembles to Parallel Systems

	1. Ensembles:
	2. Parallel Systems:
	2.3 Goal of Our Research and Expected Impact

	3 METHODS, ASSUMPTIONS , AND PROCEDURES
	3.1 The Meld Language
	3.1.1 Kinds of Facts
	3.1.2 Rules

	Figure 1: Abstract syntax for Meld programs
	Figure 2: All-Pairs Shortest Path algorithm.
	3.1.3 Evaluation
	3.1.4 Aggregates
	3.1.5 Deletion
	3.1.6 Linear Logic
	3.2 Distribution and Optimization
	3.2.1 Localization

	Figure 3: Original code.
	Figure 4: Localization tree for code in Figure 3.
	3.2.2 Local Aggregates
	3.2.3 Neighborhood Aggregates

	Figure 5: Localized rules for code in Figure 3.
	I > 0,
	Figure 6: PageRank algorithm.
	Figure 7: Transformed rules using a neighborhood aggregate.
	3.2.4 Detecting Iterative Refinements
	3.2.5 Linear Logic
	3.3 Implementing Meld on Parallel and Distributed Systems
	3.3.1 Execution Model
	3.3.2 Graph Clustering

	Figure 8: Clustering using a breadth-first method.
	3.3.3 Multithreaded Execution
	3.3.4 Distributed Computation
	3.4 Implementation Details
	3.4.1 Compiler
	3.4.2 Virtual Machine

	4 RESULTS AND DISCUSSION
	4.1 Experimental Results

	Figure 9: Performance results for the PageRank datasets. Note that both DD and DDWO come up on top and that MPI and DD usually trail each other, since they are both static schedulers.
	(a) Loopy Belief Propagation benchmark.
	Figure 10: Performance results for the Neural Network (NN) and Belief Propagation (BP) programs. While BP is a program with a very regular and clear-cut computational pattern, in NN the communication and computation is not as regular, therefore it req...
	(a) All Pairs with dataset grid 35.
	(b) All Pairs with dataset grid 25 (paths included).
	Figure 11: Performance results for the All Pairs Shortest Paths program. In (a) and (c) only the shortest distance is computed, while in (b) both the minimal distance and the corresponding path are computed.
	5 CONCULSION
	REFERENCES
	APPENDIX
	Here we list the source code for the Meld programs we evaluated.
	I > 0,

